

#### GENERAL DESCRIPTION

The SENM3Dx is a CMOS magnetic field sensor that allows the acquisition of all three magnetic-field components (Bx, By and Bz) at the same time and at the same spot. The sensor incorporates three groups of mutually orthogonal Hall-effect elements (one horizontal and two vertical) with biasing circuits and amplifiers for each of them. The integrated Hall elements are very compact and occupy a small area of about  $100 \times 100 \, \mu m^2$ . This allows for very high spatial resolution of the sensor. The applied CMOS technology enables high precision in the fabrication of the vertical and horizontal Hall elements, which gives high angular accuracy (orthogonality) of the three measurement/sensitivity axis Bx, By and Bz. The application of the spinning-current technique in the biasing of the Hall elements significantly suppresses offset, low-frequency noise, and the planar Hall effect. The sensor provides high analog bandwidth from DC to 220kHz. A built-in temperature sensor allows to measure the current chip temperature at the field sensitive volume.

#### **FEATURES:** TYPICAL APPLICATIONS: Real 3D magnetic-field measurement with the 3D Positioning sensor, linear and angular for possibility to select the active sensitivity axis; any joysticks, angle sensor one, two or all three axis at the same time 1D, 2D, 3D Proximity sensor Analog, PWM and SPI (5V) digital interface Current sensor with any axis and selectable High magnetic field resolution: 1 μT ranges Field sensitive volume: 100 x 100 x 10 μm<sup>3</sup> Magnetometers, multi-probe measurement set-Selectable measurement ranges from 20 mT to 4 T ups i.e. array of sensors High analog frequency bandwidth: DC to 220 kHz Built-in temperature sensor On-chip correction of sensitivity, offset, noise and temperature drift, parametrizable in EEPROM Adjustable signal conditioning individually for each Hall sensor, Bx, By and Bz Programmable threshold comparator for each channel, enabling a signal level detection feature

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 1/24

PHONE

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch





# 2. TABLE OF CONTENTS

| 1. | GENER          | AL DESCRIPTION                                                                                   | 1        |
|----|----------------|--------------------------------------------------------------------------------------------------|----------|
| 2. | TABLE          | OF CONTENTS                                                                                      | 2        |
| 3. | PACKA          | GE INFORMATION                                                                                   | 3        |
|    | 3.1            | Dimensions                                                                                       | 3        |
|    | 3.2            | Pinout                                                                                           | 4        |
|    |                |                                                                                                  |          |
|    | 3.3            | Sensitivity Vectors                                                                              | 5        |
| 4. | BLOCK          | DIAGRAM                                                                                          | 5        |
| 5. | ABSOL          | UTE MAXIMUM RATINGS                                                                              | 6        |
| 6. | GLOSS          | ARY OF TERMS                                                                                     | 6        |
| 7. | MAGN           | ETIC AND ELECTRICAL CHARACTERISTICS                                                              | 7        |
| 8. | SPI INT        | ERFACE                                                                                           | 11       |
|    | 8.1            | Register Read/Write Access                                                                       | 11       |
|    | 8.1.1          | Register Read Access                                                                             | 12       |
|    | 8.1.2          | Register Write Access                                                                            | 12       |
|    | 8.2            | EEPROM Read/Write Access                                                                         | 12       |
|    | 8.2.1          | EEPROM Read Access                                                                               | 13       |
|    | 8.2.2          | EEPROM Write Access                                                                              | 13       |
| 9. | REGIST         | TERS                                                                                             | 14       |
|    | 9.1            | Register Map                                                                                     | 14       |
|    | 9.2            | Register Content                                                                                 | 15       |
|    | 9.2.1          | Spinning Phase Settings                                                                          | 15       |
|    | 9.2.2          | Pulse Width Modulation Settings                                                                  | 16       |
|    | 9.2.3          | Channel Control Settings and ADC Data                                                            | 16       |
|    | 9.2.4          | Clock Frequency Settings                                                                         | 17       |
|    | 9.2.5          | Comparator Threshold Settings                                                                    | 18       |
|    | 9.2.6          | Hall Element Voltage Gain Settings                                                               | 18       |
|    | 9.2.7<br>9.2.8 | Current Source Settings For Hall Elements Bias Linearity Compensation Settings For Hall Elements | 19<br>19 |
|    | 9.2.8          | Temperature Compensation Settings For Hall Elements                                              | 20       |
|    | 9.2.10         | Offset Correction Settings For Hall Elements                                                     | 20       |
|    | 9.2.11         | Temperature Coefficient Of Offset Correction Settings For Hall Elements                          | 21       |
|    | 9.2.12         | Sensor Status Register                                                                           | 21       |
| 10 | . EEP          | ROM MEMORY MAP                                                                                   | 22       |

Ref.No.: SENM3Dx v2.0

Rev.1.1

Page 2/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch





## 3. PACKAGE INFORMATION

The non-magnetic QFN28 package has a lead frame made of copper and the body material is a semiconductor molding epoxy. Contact SENIS for details.

#### 3.1 Dimensions

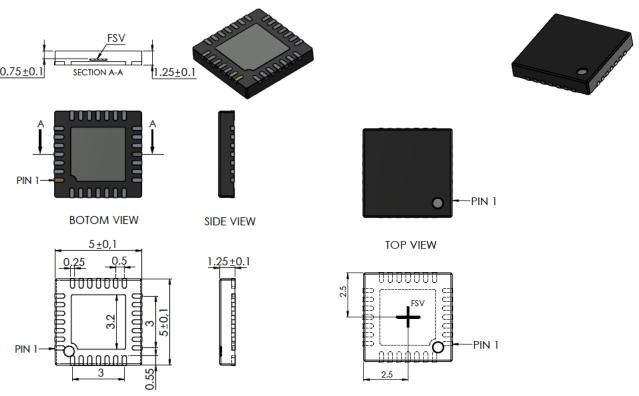



Figure 1: Dimensions of QFN 5x5 mm<sup>2</sup> package with 28 pads. The field sensitive volume (FSV) is located at the center of the package. Not to scale

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 3/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch



## 3.2 Pinout

| Pin# | Symbol    | Туре    | Direction | Description.                                                                     |
|------|-----------|---------|-----------|----------------------------------------------------------------------------------|
| 1    | -         | -       |           | Not connected                                                                    |
| 2    | VCM       | Ground  | Power     | Virtual ground (typical +2.35V); bypass capacitor 100 nF optional                |
| 3    | VREF      | Analog  | Out       | Bandgap reference voltage (+1.25V); bypass capacitor 100nF to GNDA               |
| 4    | MCLK      | Digital | In        | SPI Master Clock                                                                 |
| 5    | MOSI      | Digital | In        | SPI Master Out Slave In                                                          |
| 6    | MISO      | Digital | Out       | SPI Master In Slave Out                                                          |
| 7    | -         | -       | -         | Not connected                                                                    |
| 8    | -         | -       | -         | Not connected                                                                    |
| 9    | SSB       | Digital | In        | SPI Chip (Slave) Select; active-low                                              |
| 10   | TEST_EN   | Digital | In        | For internal use only; do not connect                                            |
| 11   | TEST_DMUX | Digital | Out       | For internal use only; do not connect                                            |
| 12   | VDD       | Supply  | Power     | Internal regulated digital supply voltage (3.3V); bypass capacitor 100nF to GNDD |
| 13   | GNDD      | Supply  | Power     | Ground digital                                                                   |
| 14   | -         | -       | -         | Not connected                                                                    |
| 15   | -         | -       | -         | Not connected                                                                    |
| 16   | XD        | Digital | Out       | Magnetic field component Bx as PWM or comparator output                          |
| 17   | ZD        | Digital | Out       | Magnetic field component Bz as PWM or comparator output                          |
| 18   | YD        | Digital | Out       | Magnetic field component By as PWM or comparator output                          |
| 19   | VCCA      | Supply  | Power     | Internal regulated analog supply voltage (4.5V); bypass capacitor 100nF to GNDA  |
| 20   | VCC       | Supply  | Power     | Main supply voltage (+5V)                                                        |
| 21   | -         | -       | -         | Not connected                                                                    |
| 22   | -         | -       | -         | Not connected                                                                    |
| 23   | XA        | Analog  | Out       | Bx field component voltage output                                                |
| 24   | ZA        | Analog  | Out       | Bz field component voltage output                                                |
| 25   | YA        | Analog  | Out       | By field component voltage output                                                |
| 26   | TA        | Analog  | Out       | Sensor chip temperature voltage output                                           |
| 27   | GNDA      | Supply  | Power     | Ground analog                                                                    |
| 28   | -         | -       | -         | Not connected                                                                    |

Table 1: SENM3Dx Pin List

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 4/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch





## 3.3 Sensitivity Vectors

Figure 2 shows the QFN28 package and corresponding magnetic sensitivity axis with respect to pin 1.

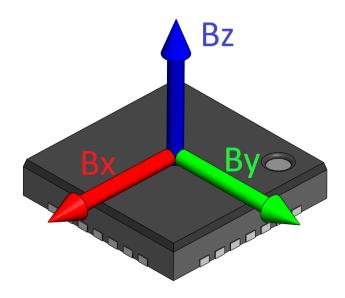



Figure 2: Magnetic Axis Orientation.

## 4. BLOCK DIAGRAM

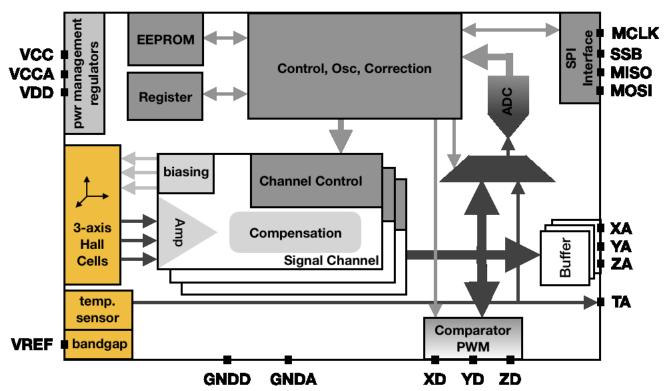



Figure 3: Block diagram of SENM3Dx

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 5/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch



# 5. ABSOLUTE MAXIMUM RATINGS

| Parameter, Unit                      | Min. Rating | Max. Rating |
|--------------------------------------|-------------|-------------|
| Power supply voltage VCC [V]         | -           | 7           |
| Digital input voltage [V]            | -0.3        | VCC+0.3     |
| Shorted output current [mA]          | -50         | 50          |
| Storage temperature [°C]             | -50         | 150         |
| Operation temperature [°C]           | -40         | 125         |
| Lead temperature, 10s soldering [°C] | -           | 220         |
| ESD protection at inputs, HBM [kV]   | -2          | 2           |
| Magnetic Field [T]                   | -6          | 6           |

Table 2: Absolute Maximal Ratings

Note that exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# 6. GLOSSARY OF TERMS

| Name, Acronym               | Description                                              |
|-----------------------------|----------------------------------------------------------|
| ADC                         | Analog-to-Digital Converter                              |
| BW                          | Band Width                                               |
| CNTS                        | (ADC) Counts; Decimal Value of the ADC Conversion Result |
| CPOL                        | Clock Polarity                                           |
| СРНА                        | Clock Phase                                              |
| DAC                         | Digital-to-Analog Converter                              |
| ENOB                        | Effective Number of Bits                                 |
| EEPROM, E <sup>2</sup> PROM | Electrically Erasable Programmable Read-Only Memory      |
| ESD                         | Electrostatic Discharge                                  |
| FSV                         | Field Sensitive Volume                                   |
| НВМ                         | Human-body model                                         |
| kSPS                        | 1000 Samples per second                                  |
| LSB                         | Least Significant Bit                                    |
| MCLK                        | Master Clock                                             |
| MISO                        | Master Input Slave Output                                |
| MOSI                        | Master Output Slave Input                                |
| MSB                         | Most Significant Byte                                    |
| NSD                         | Noise Spectral Density                                   |
| NVM                         | Non-Volatile Memory                                      |
| PWM                         | Pulse Width Modulation                                   |
| SPI                         | Serial Peripheral Interface                              |
| SSB                         | Slave Select Low-Active                                  |
| SR                          | Sampling Rate                                            |

Table 3: Glossary of terms

E-MAIL

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 6/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38

info@senis.ch





## 7. MAGNETIC AND ELECTRICAL CHARACTERISTICS

Unless otherwise noted, the given specifications and characteristics are typical values and apply for room temperature (23°C) and after a device warm up time of 15 minutes, VCC=5 V, Hall element bias current of 2.2mA for Vertical Hall elements and 2.6mA for Horizontal Hall element in four phase spinning. Note that current of 2.2mA for vertical Hall elements correspond to value 0x14 in registers 0x11 and 0x13, while horizontal Hall element current of 2.6mA corresponds to value 0x18 in register 0x12. Any change in the value of the mentioned register leads to a change in the sensitivity of the Hall elements.

The preliminary measurement values show that this rather high bias current settings still allow to operate the sensor with good performance, however, optimizing the sensor parameter settings will lead to significantly improved performance, i.e. reduced zero magnetic field offsets, less current consumption, higher linearity, etc.

| Parameter, Unit                      | Typical Value      |
|--------------------------------------|--------------------|
| Power supply voltage VCC [V]         | 5                  |
| Current consumption [mA]             | < 40               |
| Analog voltage regulator output [V]  | 4.5                |
| Digital voltage regulator output [V] | 3.2                |
| Reference voltage output [V]         | 1.2                |
| Common voltage output [V]            | 2.35               |
| Analog output range to GND [V]       | 0.125 - 4.380      |
| Operating temperature [°C]           | -40 to +125        |
| Field Sensitive Volume [µm³]         | 100 x 100 x 10     |
| Crosstalk between channels           | <0.2 %             |
| Output resistance                    | 10kOhm //2nF       |
| Output current capability            | 20 mA              |
| Oscillator frequency [MHz]           | 10.4               |
| Spinning frequency                   | 1.25 MHz, 4 phases |
| Hall element biasing current [mA]    | 2.2 – 2.6 mA       |
| 3dB Frequency Bandwidth              | DC – 220 kHz       |
| Measurable magnetic flux density [T] | ±5                 |

Table 4: Typical electrical characteristics

| Parameter                 | Symbol            | Min. | Тур. | Max.    | Unit | Test<br>Condition |
|---------------------------|-------------------|------|------|---------|------|-------------------|
| High level input voltage  | $V_{IH}$          | 3    | 3.5  | 5.3     | ٧    | VCC=5V            |
| Low level input voltage   | V <sub>IL</sub>   | 1    | 1.5  | 2       | V    | VCC=5V            |
| High level output voltage | $V_{OH}$          |      |      | VCC-0.3 | ٧    | Iout=4mA          |
| Low level output voltage  | V <sub>OL</sub>   |      |      | 0.3     | V    | Iout=4mA          |
| Input leakage current     | I <sub>LEAK</sub> | -10  |      | 10      | pА   |                   |
| Input capacitance         | C <sub>IN</sub>   |      |      | 5       | рF   |                   |

Table 5: Digital I/O characteristics

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 7/24

PHONE +4

FAX +4

E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch





| Range Name | Measurement Range [mT] Min./Max. |
|------------|----------------------------------|
| 20 mT      | -20/+20                          |
| 40 mT      | -40/+40                          |
| 400 mT     | -400/+400                        |
| 4000 mT    | -4000/+4000                      |

Table 6: Selectable Main Magnetic Field Measurement Ranges. See for Table 21 Details.

Non-linearity of the sensor signal is < 1% for all axis over the full signal range.

| Sonsitivity to DC magnetic field | Value for specified axis |                |         |  |
|----------------------------------|--------------------------|----------------|---------|--|
| Sensitivity to DC magnetic field | Вх                       | Ву             | Bz      |  |
| Range                            |                          | Sensitivit     | y [V/T] |  |
| 20 mT                            | 63                       | 63             | 63      |  |
| 40 mT                            | 34.65                    | 34.65          | 34.65   |  |
| 400 mT                           | 3.78                     | 3.78           | 3.78    |  |
| 4000 mT                          | 0.378                    | 0.378          | 0.378   |  |
| Range                            | Sensi                    | tivity [ADC cr | nts/mT] |  |
| 20 mT                            | 1000                     | 1000           | 1000    |  |
| 40 mT                            | 550                      | 550            | 550     |  |
| 400 mT                           | 60                       | 60             | 60      |  |
| 4000 mT                          | 6                        | 6              | 6       |  |

Table 7: Sensor Sensitivity Overview and Measurement Range Definition. Note that that shown values depend on the bias current setting and are indicative.

| Income at all Zero Manuschia Field Offices | Value    | Value for specified axis |            |  |  |
|--------------------------------------------|----------|--------------------------|------------|--|--|
| Uncorrected Zero Magnetic Field Offsets    | Вх       | Ву                       | Bz         |  |  |
| Range                                      | Out      | out Voltage [            | mV]        |  |  |
| 20 mT                                      | ±150     | ±150                     | ±120       |  |  |
| 40 mT                                      | ±80      | ±80                      | ±60        |  |  |
| 400 mT                                     | ±60      | ±60                      | ±60        |  |  |
| 4000 mT                                    | ±60      | ±60                      | ±60        |  |  |
| Range                                      | Correspo | onding Magno<br>[mT]     | etic Field |  |  |
| 20 mT                                      | ±2.4     | ±2.4                     | ±1.9       |  |  |
| 40 mT                                      | ±2.3     | ±2.3                     | ±1.8       |  |  |
| 400 mT                                     | ±15.9    | ±15.9                    | ±15.9      |  |  |
| 4000 mT                                    | ±159     | ±159                     | ±159       |  |  |

Table 8: Uncorrected Zero Magnetic Field Offsets. See section 9.2.10 for further details concerning offset correction.

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 8/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch





| Noise Spectral Densities | Value for specified axis |                                 |           |  |
|--------------------------|--------------------------|---------------------------------|-----------|--|
| Noise Spectral Densities | Вх                       | Ву                              | Bz        |  |
| Range                    | Voltage N                | loise NSD @ $[\mu V/\sqrt{Hz}]$ | f > 10 Hz |  |
| 20 mT                    | 12.60                    | 12.70                           | 12.20     |  |
| 40 mT                    | 8.40                     | 8.50                            | 8.00      |  |
| 400 mT                   | 1.31                     | 1.30                            | 1.30      |  |
| 4000 mT                  | 1.00                     | 1.05                            | 1.04      |  |
| Range                    | •                        | nding Magn<br>f > 10 Hz [μ]     |           |  |
| 20 mT                    | 0.20                     | 0.20                            | 0.20      |  |
| 40 mT                    | 0.27                     | 0.27                            | 0.26      |  |
| 400 mT                   | 0.35                     | 0.35                            | 0.35      |  |
| 4000 mT                  | 2.60                     | 2.60                            | 2.60      |  |

Table 9: Input Referred, Equivalent White Noise Specification of the Sensor

| Devemptor for Angles 9 Digital Output                        | Value        | Value for specified axis |              |  |  |
|--------------------------------------------------------------|--------------|--------------------------|--------------|--|--|
| Parameter for Analog & Digital Output                        | Вх           | Ву                       | Bz           |  |  |
| Analog output voltage range referenced to the GND [V]        |              | 0.125 - 4.380            | )            |  |  |
| Temperature Coeff. of Sensitivity @Temperature range 25±10°C |              | [ppm/°C]                 |              |  |  |
|                                                              |              | <100                     |              |  |  |
| Range Offset voltage fluct                                   | tuation & dr | ift (Δt = 0.05           | s, t = 100s) |  |  |
|                                                              |              |                          | [µVrms]      |  |  |
| 20 mT                                                        | 80           | 80                       | 70           |  |  |
| 40 mT                                                        | 60           | 65                       | 50           |  |  |
| 400 mT                                                       | 45           | 45                       | 35           |  |  |
| 4000 mT                                                      | 40           | 40                       | 35           |  |  |
|                                                              |              | Value for specified axis |              |  |  |
| Parameter for Analog & Digital Output                        | Вх           | Ву                       | Bz           |  |  |
| Range Corresponding field offset fluctuation & drift (peak   | -to-peak val | lue)(∆t= 0.05            | s, t = 100s) |  |  |
|                                                              |              |                          | [µTrms]      |  |  |
| 20 mT                                                        | 1.30         | 1.30                     | 1.10         |  |  |
| 40 mT                                                        | 1.73         | 1.87                     | 1.44         |  |  |
| 400 mT                                                       | 11.9         | 11.9                     | 9.26         |  |  |
| 4000 mT                                                      | 106          | 106                      | 92.6         |  |  |

Table 10: Temperature Coefficients and Fluctuations. Note that the temperature coefficients of offset and sensitivity can be compensated (Details in 9.2.9 and 9.2.11).

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 9/24

PHONE FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch





| ADC                    |     |
|------------------------|-----|
| ADC resolution [bit]   | 16  |
| ADC sample rate [kSPS] | 4.5 |
| Conversion [μV/LSB]    | ≈63 |

Table 11: ADC Specification

| Temperature sensor, analog and digital out                      |       |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------|--|--|--|--|--|--|
| Output voltage TA @0°C [V]                                      | 1.65  |  |  |  |  |  |  |
| Sensitivity of TA, Range 15-40°C, [mV/°C]                       | 10.30 |  |  |  |  |  |  |
| Digital Temperature Reading Sensitivity, range 15-40°C [LSB/°C] | 168   |  |  |  |  |  |  |
| Digital Temperature Reading @0°C [LSB]                          | 19913 |  |  |  |  |  |  |
| Temperature sensor accuracy [°C]                                | < 0.1 |  |  |  |  |  |  |

Table 12: Temperature Sensor Specification

| PWM Digital Output              |          |
|---------------------------------|----------|
| PWM resolution (ENOB) [bit]     | 12 - 16  |
| PWM output frequency range [Hz] | 4777-298 |
| Response time [ms]              | 0.5      |
| Jitter [LSB]                    | 1        |
| Output voltage high [V]         | 4.6      |
| Output voltage low [V]          | 0.4      |
| Rising edge slew rate [V/μs]    | 2        |
| Falling edge slew rate [V/μs]   | 2        |

Table 13: PWM Characteristics and Properties (details in Section 9.2.2)

The analog output voltages XA, YA and ZA ( $\langle X,Y,Z\rangle A$ ) are given by  $\langle X,Y,Z\rangle A = (lin*Gain*(Vin-THRES_<math>\langle X,Y,Z\rangle))^2 + (Gain*(Vin-THRES_<math>\langle X,Y,Z\rangle))^2 + (Gain*(Vin-THRES_{\langle X,Y,Z\rangle}))^2 + (Gain*(Vin-THRES_{\langle X,Y,Z\rangle})^2 + (Gain$ 

where Iin denotes an internal control signal for linearity correction, THRES\_<X,Y,Z> is the comparator threshold voltage setting (see chapter 9.2.5) of the respective channel, Gain is the amplification of the entire signal chain from the Hall element itself to the output (see chapter 9.2.6) and Vin is the voltage drop across the Hall element.

Ref.No.: SENM3Dx v2.0

Rev.1.1 Page 10/24 PHONE FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch





### SPI INTERFACE

The SENM3Dx is compatible with SPI mode 1, active-low chip (slave) select and fixed 8-bit length. This means, that clock polarity (CPOL) equals '0' and clock phase (CPHA) equals '1', i.e. data will be transferred on the falling edge of MCLK, while '0' is the idle or inactive state of MCLK. The SENM3Dx behaves always as slave of the SPI communication interface and 5V signal levels (see Table 5).

| Parameter                                             | Symbol | Min. | Max. | Unit |
|-------------------------------------------------------|--------|------|------|------|
| Clock period                                          | Тср    | 40   |      | ns   |
| Setup time from SSB low to MCLK high                  | Tsc    | 100  |      | ns   |
| Hold time from SSB high to MCLK low                   | Thc    | 100  |      | ns   |
| MOSI setup time to MCLK (1->0)                        | Tsi    | 5    |      | ns   |
| MOSI Hold time to MCLK (1->0)                         | Thi    | 0    |      | ns   |
| MISO propagation time from tri-state to logic (SSB=0) | Ttr2d  |      | 10   | ns   |
| MISO propagation time from logic to tri-state (SSB=1) | Td2tr  |      | 10   | ns   |
| MISO propagation time from MCLK (1->0)                | Tdo    |      | 8    | ns   |

Table 14: SPI Timing Parameter

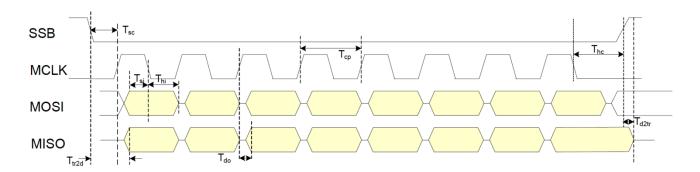



Figure 4: SPI Timing Parameter Definitions

## 8.1 Register Read/Write Access

The access to the SPI interface is memory mapped and implemented as follows:

The first byte (8 bits) sent from the master (host; MOSI) represents a command word and includes a direction control bit (most significant bit): '1' for read and '0' for write access followed by a 7-bit address which is zero (i.e. in hex format 0x00) for the register memory space (Figure 5). The second byte represents the 8-bit address (ADD) to read or write.

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 11/24

PHONE FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch





## 8.1.1 Register Read Access

For a register read operation, the SENM3Dx responds (MISO) - by sending the most significant bit first - the data byte (Data[ADD]) from the provided address. The addressed data is available and valid after one byte delay, following the address byte. Multiple bytes can be read sequentially - from the provided address on - in a single SPI frame, which closes with the rising SSB signal.

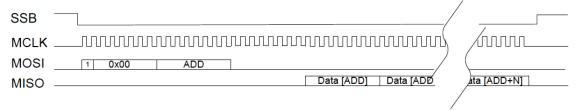



Figure 5: SPI Communication for Register Read Access Timing Diagram

#### 8.1.2 Register Write Access

The register write access starts with a leading (MSB) '0', followed by 7 zero bits to conclude the first byte sent from the host (*Figure 6*). The second byte contains the write address, followed by the data to write byte. Again, as mentioned for the register read access, also the write operation may be performed sequentially within one SPI frame for incremental addresses. Note that during the write process the MISO signal is unused, thus kept at '0'.

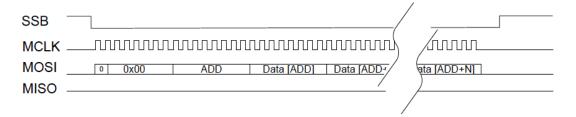



Figure 6: SPI Communication for Register Write Access Timing Diagram

#### 8.2 EEPROM Read/Write Access

The internal 256 x 8bit EEPROM is a non-volatile memory which holds initialization and calibration data as well as gain dependent settings and the definition of internal measurement sequences. To change the address space from register to EEPROM access, the last bit of the first byte has to be set to '1'. Furthermore, the command word again includes the direction control bit 0 for read and '1' for write access. However, the read and write EEPROM access is somewhat different from the register access detailed before, since read/write operations return a special key (0xA5) via MISO (*Figure 7 and Figure 8*) to acknowledge the transfer and only single byte transfers per SPI frame are supported (i.e. no sequential read or write access possible).

PHONE +41 43 205 26 37 SENIS AG

FAX +41 43 205 26 38 Neuhofstrasse 5a

E-MAIL info@senis.ch 6340 Baar, Switzerland



### 8.2.1 EEPROM Read Access

For an EEPROM read operation, the ASIC responds with a special acknowledge byte 0xA5 followed by the addressed data. Depending on the ratio between the internal clock and the SPI clock frequency, this can happen at the earliest at the second byte following the command byte. Data sent by the SPI master (host) after the expected data byte will be disregarded. The master should therefore keep the SPI frame active until the acknowledge and data is received to ensure data integrity.

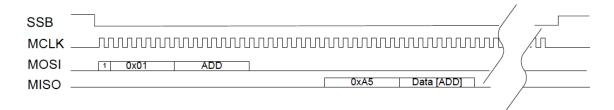



Figure 7: SPI Communication for EEPROM Read Access Timing Diagram

#### 8.2.2 EEPROM Write Access

The EEPROM write access lasts nominally 12 ms for programming one byte. The ASIC responds again with the acknowledge byte 0xA5 once the write operation is successfully completed. The SPI master (host) should leave the SPI frame active until the acknowledge byte is received, otherwise EEPROM data consistency cannot be guaranteed.

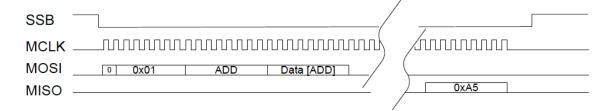



Figure 8: SPI Communication for EEPROM Write Access Timing Diagram



Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 13/24



### 9. REGISTERS

### 9.1 Register Map

Table 15 shows a list of all user relevant registers. Register addresses which are not shown in the list (i.e. 0x3E, 0x40 to 0xFF) must not be written, since they contain data essential for the ASIC operation. The default values detailed in the list are loaded to the registers at power-up if the EEPROM data is not activated (i.e. valid check sum and key present). Note that LSB and MSB are used here for least and most significant byte respectively. Register REG\_0 to REG\_7 control the spinning current state machine and the default values are the best possible settings, thus they should not be changed.

| Register ID  | Address | Default<br>value | Mode | Meaning                                                            | EEPROM<br>location | Gain<br>dependent |
|--------------|---------|------------------|------|--------------------------------------------------------------------|--------------------|-------------------|
| REG_0        | 0x00    | 16               | R/W  | Do not change                                                      | Yes                | No                |
| REG_1        | 0x01    | 18               | R/W  | Do not change                                                      | Yes                | No                |
| REG_2        | 0x02    | 19               | R/W  | Do not change                                                      | Yes                | No                |
| REG_3        | 0x03    | 17               | R/W  | Do not change                                                      | Yes                | No                |
| REG_4        | 0x04    | 57               | R/W  | Do not change                                                      | Yes                | No                |
| REG_5        | 0x05    | 60               | R/W  | Do not change                                                      | Yes                | No                |
| REG_6        | 0x06    | 0                | R/W  | Do not change                                                      | Yes                | No                |
| REG_7        | 0x07    | 0                | R/W  | Do not change                                                      | Yes                | No                |
| PWM_CTRL     | 0x08    | 16               | R/W  | PWM scaling factor and Low Pass<br>Filter Corner Frequency Setting | Yes                | No                |
| CHANNEL_CTRL | 0x09    | 15               | R/W  | Channel enable and digital output selection                        | Yes                | No                |
| OSC trim     | 0x0A    | 0                | R/W  | Oscillator trim data                                               | Yes                | No                |
| THRES_X      | 0x0B    | 0                | R/W  | Channel X threshold control                                        | Yes                | No                |
| THRES_Z      | 0x0C    | 0                | R/W  | Channel Z threshold control                                        | Yes                | No                |
| THRES_Y      | 0x0D    | 0                | R/W  | Channel Y threshold control                                        | Yes                | No                |
| G_CTRL_X     | 0x0E    | 1                | R/W  | Pre-amplifier gain control X                                       | Partial            | -                 |
| G_CTRL_Z     | 0x0F    | 1                | R/W  | Pre-amplifier gain control Z                                       | Partial            | -                 |
| G_CTRL_Y     | 0x10    | 1                | R/W  | Pre-amplifier gain control Y                                       | Partial            | -                 |
| DAC_X        | 0x11    | 20               | R/W  | Hall element X bias current control                                | Yes                | Yes               |
| DAC_Z        | 0x12    | 24               | R/W  | Hall element Z bias current control                                | Yes                | Yes               |
| DAC_Y        | 0x13    | 20               | R/W  | Hall element Y bias current control                                | Yes                | Yes               |
| SENS_X       | 0x14    | _ 1              | R/W  | Channel X linearity control <sup>2</sup>                           | Yes                | Yes               |
| SENS_Z       | 0x15    | - 1              | R/W  | Channel Z linearity control <sup>2</sup>                           | Yes                | Yes               |
| SENS_Y       | 0x16    | _ 1              | R/W  | Channel Y linearity control <sup>2</sup>                           | Yes                | Yes               |

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 14/24

PHONE FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch



 $<sup>^{\</sup>rm 1}$  For calibrated sensors, the register value can be from 128 to 255.

<sup>&</sup>lt;sup>2</sup> This register can have one of two functions: non-linearity compensation or fine gain tuning. With calibrated sensors, the value of this register should not be changed (Details in 9.2.8).



| Register ID | Address      | Default<br>value | Mode | Meaning                                         | EEPROM<br>location | Gain<br>dependent |
|-------------|--------------|------------------|------|-------------------------------------------------|--------------------|-------------------|
| SENS_TC_X   | 0x17         | 0                | R/W  | Channel X sensitivity temp. coefficient control | Yes                | Yes               |
| SENS_TC_Z   | 0x18         | 0                | R/W  | Channel Z sensitivity temp. coefficient control | Yes                | Yes               |
| SENS_TC_Y   | 0x19         | 0                | R/W  | Channel Y sensitivity temp. coefficient control | Yes                | Yes               |
| OFFSET_X    | 0x1A         | 0                | R/W  | Channel X offset control                        | Yes                | Yes               |
| OFFSET_Z    | 0x1B         | 0                | R/W  | Channel Z offset control                        | Yes                | Yes               |
| OFFSET_Y    | 0x1C         | 0                | R/W  | Channel Y offset control                        | Yes                | Yes               |
| OFFSET_TC_X | 0x1D         | 0                | R/W  | Channel X offset temp. coefficient control      | Yes                | Yes               |
| OFFSET_TC_Z | 0x1E         | 0                | R/W  | Channel Z offset temp coefficient control       | Yes                | Yes               |
| OFFSET_TC_Y | 0x1F         | 0                | R/W  | Channel Y offset temp. coefficient control      | Yes                | Yes               |
| STATUS      | 0x3F         | -                | R    | Status byte                                     | No                 | -                 |
| ADC_DATAXL  | 0x40         | -                | R    | ADC readout data (LSB) X channel                | No                 | -                 |
| ADC_DATAXH  | 0x41         | -                | R    | ADC readout data (MSB) X channel                | No                 | -                 |
| ADC_DATAZL  | 0x42         | -                | R    | ADC readout data (LSB) Z channel                | No                 | -                 |
| ADC_DATAZH  | 0x43         | -                | R    | ADC readout data (MSB) Z channel                | No                 | -                 |
| ADC_DATAYL  | 0x44         | -                | R    | ADC readout data (LSB) Y channel                | No                 | -                 |
| ADC_DATAYH  | 0x45         | -                | R    | ADC readout data (MSB) Y channel                | No                 | -                 |
| ADC_DATATL  | 0x46         | -                | R    | ADC readout data (LSB)<br>Temperature           | No                 | -                 |
| ADC_DATATH  | 0x <b>47</b> | -                | R    | ADC readout data (MSB)<br>Temperature           | No                 | -                 |

Table 15: Overview Register Map and Settings

## 9.2 Register Content

## 9.2.1 Spinning Phase Settings

The sequencer is configured by register values from address 0x00 to 0x07. The user should not change those values and if the data loading from EEPROM is activated, the default values shown in Table 15 have to be used.

| Register ID    | Address         | Mode | Bits | Meaning       | Default  |
|----------------|-----------------|------|------|---------------|----------|
| REG_0 to REG_7 | 0x00 to<br>0x07 | R/W  | 7:0  | Do not change | Table 15 |

Table 16: Registers for Hall Element Spinning Current Setting

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 15/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch



### 9.2.2 Pulse Width Modulation and Low Pass Filter Settings

Figure 9 shows the timing diagram of the PWM cycle. A parameter in the configuration register PWM\_CTRL (defined below) scales the entire waveform. The PWM\_CTRL register also allows selecting four corner frequency values of a low pass filter in the signal path.

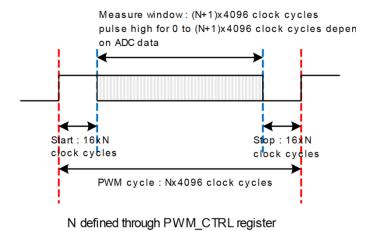



Figure 9: PWM Timing Diagram

| Register ID | Address | Mode | Bits | Meaning                                      | Default |
|-------------|---------|------|------|----------------------------------------------|---------|
| PWM_CTRL    | 0x08    | R/W  | 2:0  | Scaling of PWM cycle (ref. to 20 MHz clock)  | 0       |
|             |         |      |      | 0 -> 4.845 kHz                               |         |
|             |         |      |      | 1 -> 2.42 kHz                                |         |
|             |         |      |      | 2 -> 1.21 kHz                                |         |
|             |         |      |      | 3 -> 605 Hz                                  |         |
|             |         |      |      | 4 -> 302 Hz                                  |         |
|             |         |      |      | 5-7 -> Invalid (processed as 4) <sup>3</sup> |         |
|             |         |      | 3    | Reserved                                     | 0       |
|             |         |      | 5:4  | Low pass filter corner frequency setting     | 1       |
|             |         |      |      | 0 -> 100 kHz                                 |         |
|             |         |      |      | 1 -> 150 kHz                                 |         |
|             |         |      |      | 2 -> 200 kHz                                 |         |
|             |         |      |      | 3 -> 220 kHz                                 |         |
|             |         |      | 7:6  | Reserved                                     | 0       |

Table 17: Register Settings for PWM Interface and Low Pass Filter Setting.

### 9.2.3 Channel Control Settings and ADC Data

The sampling rate is always directly proportional to the oscillator clock frequency. For the default oscillator clock frequency, the sampling rate is 4.5 kSPS. The relationship between the oscillator clock frequency and the sampling rate is given by

ADC Sampling Rate [kSPS] =  $1000 \times F_{OSC}$  [MHz] /  $(2^{11} + 256)$ .

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 16/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch

<sup>&</sup>lt;sup>3</sup>: If the register value is 0 (fastest speed), only the 12 MSB of the ADC data will be used for PWM. Any increment from that will use one additional bit. For the largest setting (4; slowest PWM cycle) all 16 bits will be used.



If only one magnetic field measurement channel and the temperature channel are enabled, the conversion rate will be 4.5 kSPS/2 = 2.25 kSPS. In case a channel is disabled, the associated output data will be read as 0 via SPI and the power will be turned off for this channel (which includes the respective DAC for this channel). Note that the ADC data should be read at once and sequentially, i.e. one SPI transfer for  $4 \times 2$  bytes starting from address 0x40.

| Register ID  | Address | Mode | Bits | Meaning                                     | Default |
|--------------|---------|------|------|---------------------------------------------|---------|
| CHANNEL_CTRL | 0x09    | R/W  | 0    | 1= channel X enabled                        | 1       |
| -            |         | •    |      | 0 = channel X disabled                      |         |
|              |         |      | 1    | 1= channel Z enabled                        | 1       |
|              |         |      |      | 0 = channel Z disabled                      |         |
|              |         |      | 2    | 1= channel Y enabled                        | 1       |
|              |         |      |      | 0 = channel Y disabled                      |         |
|              |         |      | 3    | 1= Temperature sensor enabled               | 1       |
|              |         |      |      | 0 = Temperature sensor disabled             |         |
|              |         |      | 4    | 1= PWM enabled for channel Z on ZD          | 0       |
|              |         |      |      | 0= Comparator output routed through YD      |         |
|              |         |      | 5    | 1= PWM enabled for channel X on XD          | 0       |
|              |         |      |      | 0= Comparator output routed through XD      |         |
|              |         |      | 6    | 1= PWM enabled for channel Y on YD          | 0       |
|              |         |      |      | 0= Comparator output routed through ZD      |         |
|              |         |      | 7    | Two phase spinning current enable           | 0       |
| ADC_DATAXL   | 0x40    | R    | 7:0  | LSB Data from the ADC converter – channel X | -       |
| ADC_DATAXH   | 0x41    | R    | 15:8 | MSB Data from the ADC converter – channel X | -       |
| ADC_DATAZL   | 0x42    | R    | 7:0  | LSB Data from the ADC converter – channel Z | -       |
| ADC_DATAZH   | 0x43    | R    | 15:8 | MSB Data from the ADC converter – channel Z | -       |
| ADC_DATAYL   | 0x44    | R    | 7:0  | LSB Data from the ADC converter – channel Y | -       |
| ADC_DATAYH   | 0x45    | R    | 15:8 | MSB Data from the ADC converter – channel Y | -       |
| ADC_DATATL   | 0x46    | R    | 7:0  | LSB Data from the ADC converter – Temp      | -       |
| ADC DATATH   | 0x47    | R    | 15:8 | MSB Data from the ADC converter – Temp      | -       |

Table 18: Register Setting for Channel Control

# 9.2.4 Clock Frequency Settings

The nominal 10.4 MHz clock may be trimmed by the user within the range of 10.4 to 30 MHz.

| Register ID | Address | Mode | Bits | Meaning                      | Default |
|-------------|---------|------|------|------------------------------|---------|
| OSC trim    | 0x0A    | R/W  | 5:0  | Trim frequency ~370kHz /step | 0       |
|             |         |      | 7:6  | Reserved                     | 0       |

Table 19: Register for Oscillator Trimming Settings

If we want to change the frequency of the oscillator to 20 MHz, then we should enter in the register 0x0A decimal value the decimal value 26 (0x1A).

The oscillator frequency should not be changed unless absolutely necessary.

PHONE +41 43 205 26 37 SENIS AG

FAX +41 43 205 26 38 Neuhofstrasse 5a
info@senis.ch 6340 Baar, Switzerland

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 17/24



# 9.2.5 Comparator Threshold Settings

Each channel includes a comparator with hysteresis and programmable threshold value to give a '1' at the output, if the signal level is above the threshold. The output of the comparator is shared with the PWM interface and one may be selected. These threshold values also used for linear and quadratic correction of the measured Hall voltage (see chapter 0).

| Register ID | Address | Mode | Bits | Meaning                       | Default |
|-------------|---------|------|------|-------------------------------|---------|
| THRES_X     | 0x0B    | R/W  | 6:0  | Full scale 0-1.2V, 9.4mV/step | 0       |
| THRES_Z     | 0x0C    | R/W  | 6:0  | Full scale 0-1.2V, 9.4mV/step | 0       |
| THRES_Y     | 0x0D    | R/W  | 6:0  | Full scale 0-1.2V, 9.4mV/step | 0       |

Table 20: Registers for Comparator Threshold Settings

## 9.2.6 Hall Element Voltage Gain Settings

The gain control registers in Table 23 are used to select the gain of the entire signal chain, reaching from the Hall elements to the analog outputs. Gain values range from 7.5 to 3000 and two selection methods (2 and 4 bits) are available. Table 22 shows the main (default) selection method for the gain value with 2 bits, thus there are four possibilities.

| 7.5 | 75   |
|-----|------|
| 15  | 150  |
| 30  | 300  |
| 75  | 750  |
| 150 | 1500 |
| 300 | 3000 |

| gain selection 1: 4 bits |
|--------------------------|
| gain selection 0: 2 bits |

Table 21: Possible Gain Value Selection for Signal Channel

| Voltage Gain [V/V] | Measurement Range [mT] Min./Max. |
|--------------------|----------------------------------|
| 3000               | -20/+20                          |
| 1500               | -40/+40                          |
| 150                | -400/+400                        |
| 15                 | -4000/+4000                      |

Table 22: Gain Value Selection and Associated Measurement Ranges

PHONE +41 43 205 26 37 SENIS AG

FAX +41 43 205 26 38 Neuhofstrasse 5a
E-MAIL info@senis.ch 6340 Baar, Switzerland

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 18/24



| Register ID | Address | Mode | Bits | Meaning                                                           | Default |
|-------------|---------|------|------|-------------------------------------------------------------------|---------|
| G_CTRL_X    | 0x0E    | R/W  | 1:0  | Gain selection                                                    | 2       |
| G_CTRL_Z    | 0x0F    |      |      | 00 -> Gain 3000                                                   |         |
| G_CTRL_Y    | 0x10    |      |      | 01 -> Gain 1500                                                   |         |
|             |         |      |      | 10 -> Gain 150                                                    |         |
|             |         |      |      | 11 -> Gain 15                                                     |         |
|             |         |      | 3    | Gain selection method                                             | 0       |
|             |         |      |      | 0 -> Gain is controlled by bit 1:0                                |         |
|             |         |      |      | 1 -> Gain is controlled by bit 7:4                                |         |
|             |         |      | 4    | G_PRE: Gain selection for Preamp                                  | 0       |
|             |         |      |      | 1 -> 1V/V                                                         |         |
|             |         |      |      | 0 -> 10V/V                                                        |         |
|             |         |      | 6:5  | G_MAIN: Gain selection of the main amplifier                      | 0       |
|             |         |      |      | 11 -> 2.5V/V                                                      |         |
|             |         |      |      | 01 -> 5V/V                                                        |         |
|             |         |      |      | 00 -> 10 V/V                                                      |         |
|             |         |      | 7    | G_REC: Gain selection of rectifier (include gain of output stage) | 0       |
|             |         |      |      | 1 -> 3V/V                                                         |         |
|             |         |      |      | 0 -> 30V/V                                                        |         |

Table 23: Register for Signal Channel Gain Settings

## 9.2.7 Current Source Settings For Hall Elements Bias

The current source generating the bias current for each Hall element is implemented as 6-bit DAC with  $117.2~\mu\text{A/LSB}$  resolution. This DAC allows the user to fine tune the sensitivity of the Hall sensor, thus, channel mismatches can be compensated.

| Register ID | Address | Mode | Bits | Meaning                                        | Default |
|-------------|---------|------|------|------------------------------------------------|---------|
| DAC_X       | 0x11    | R/W  | 5:0  | Control bias current of the X axis Hall sensor | 8       |
|             |         |      |      | 0 -> 0.5 mA                                    |         |
|             |         |      |      | <br>63 -> 8 mA                                 |         |
|             |         |      | 7:6  | Reserved                                       | 0       |
| DAC_Z       | 0x12    | R/W  | 5:0  | Control bias current of the Z axis Hall sensor | 8       |
|             |         |      |      | 0 -> 0.5 mA                                    |         |
|             |         |      |      |                                                |         |
|             |         |      |      | 63 -> 8 mA                                     | _       |
|             |         |      | 7:6  | Reserved                                       | 0       |
| DAC_Y       | 0x13    | R/W  | 5:0  | Control bias current of the Y axis Hall sensor | 8       |
|             |         |      |      | 0 -> 0.5 mA                                    |         |
|             |         |      |      |                                                |         |
|             |         |      |      | 63 -> 8mA                                      |         |
|             |         |      | 7:6  | Reserved                                       | 0       |

Table 24: Register Settings for Biasing Hall Elements

## 9.2.8 Linearity Compensation Settings For Hall Elements

Since the Hall sensor may exhibit some non-linearity at large magnetic fields, a linearity compensation circuit is added into the Hall current sensor to compensate for this effect. This circuit adjusts the bias current into the Hall element. When bit 7 of register SENS\_X, SENS\_Y and SENS\_Z registers is set '1', the user can use the other 7 bits (6:0) to perform a fine gain adjustment with 0.05%/LSB.

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 19/24



| Register ID | Address | Mode | Bits                                                                                                              | Meaning                                                                                                       | Default |
|-------------|---------|------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------|
| SENS_X      | 0x14    | R/W  | 6:0 Adjust X axis Hall element bias current for sensitivity correction lout= lin *(1+ SENS Y*5.5e <sup>-4</sup> ) |                                                                                                               | 0       |
|             |         |      | 7                                                                                                                 | 0-> Auto linearity control 1-> Manual fine gain adjustment                                                    | 0       |
| SENS_Z      | 0x15    | R/W  | 6:0                                                                                                               | Adjust Z axis Hall element bias current for sensitivity correction lout= lin *(1+ SENS_X*5.5e <sup>-4</sup> ) | 0       |
|             |         |      | 7                                                                                                                 | 0-> Auto linearity control 1-> Manual fine gain adjustment                                                    | 0       |
| SENS_Y      | 0x16    | R/W  | 6:0 Adjust Y axis Hall element bias current for sensitivity correction lout= lin *(1+ SENS_Z*5.5e <sup>-4</sup> ) |                                                                                                               | 0       |
|             |         |      | 7                                                                                                                 | 0-> Auto linearity control 1-> Manual fine gain adjustment                                                    | 0       |

Table 25: Register for Linear Sensitivity Correction

### 9.2.9 Temperature Compensation Settings For Hall Elements

The sensitivity of a Hall element depends on temperature and therefore needs to be compensated. The temperature compensation circuit can be programmed with a temperature coefficient changing from 300 ppm/°C to 3000 ppm/°C in 32 steps of 90 ppm.

| Register ID | Address | Mode | Bits                                                                                                                                                              | Meaning                                                                                                                                                         | Default |
|-------------|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| SENS_TC_X   | 0x17    | R/W  | 4:0                                                                                                                                                               | Adjust X axis bias current to compensate for temperature effect on sensitivity<br>lout= lin *(1+ SENS_TC_X*(400e <sup>-6</sup> + SENS_TC_X*80e <sup>-6</sup> )) | 0       |
|             |         |      | 7:5                                                                                                                                                               | Reserved                                                                                                                                                        | 0       |
| SENS_TC_Z   | 0x18    | R/W  | 4:0 Adjust Z axis bias current to compensate for temperature effection sensitivity  lout= lin *(1+ SENS_TC_Z*(400e <sup>-6</sup> + SENS_TC_Z*80e <sup>-6</sup> )) |                                                                                                                                                                 | 0       |
|             |         |      | 7:5                                                                                                                                                               | Reserved                                                                                                                                                        | 0       |
| SENS_TC_Y   | 0x19    | R/W  | 4:0                                                                                                                                                               |                                                                                                                                                                 |         |
|             |         |      | 7:5                                                                                                                                                               | Reserved                                                                                                                                                        | 0       |

Table 26: Register for Correction of Sensitivity Temperature Coefficient

## 9.2.10 Offset Correction Settings For Hall Elements

If the Hall elements still show a DC offset voltage, even though there is the spinning current biasing method applied, there are three registers dedicated to compensate for it.

| Register ID | Address | Mode | Bits | Meaning                             | Default |
|-------------|---------|------|------|-------------------------------------|---------|
| OFFSET_X    | 0x1A    | R/W  | 6:0  | Channel X,Y and Z offset adjustment | 0       |
| OFFSET_Z    | 0x1B    |      |      | 440 μV/LSB                          |         |
| OFFSET_Y    | 0x1C    |      | 7    | Offset polarity control             | 0       |
|             |         |      |      | 0 -> positive offset                |         |
|             |         |      |      | 1 -> negative offset                |         |

Table 27: Register for Hall Element Offset Correction Settings

Ref.No.: SENM3Dx v2.0

Rev.1.1

Page 20/24

PHONE +41 43 205 26 37 SENIS AG

FAX +41 43 205 26 38 Neuhofstrasse 5a 6340 Baar, Switzerland



# 9.2.11 Temperature Coefficient Of Offset Correction Settings For Hall Elements

Again, the residual offset of the Hall element depends on temperature and this temperature coefficient can be corrected. Note that his correction should be applied after all other corrections (TC, linearity, etc.).

| Register ID | Address | Mode | Bits | Bits Meaning                                   |   |
|-------------|---------|------|------|------------------------------------------------|---|
| OFFSET_TC_X | 0x1D    | R/W  | 5:0  | Channel X,Y and Z temperature dependent offset | 0 |
| OFFSET_TC_Z | 0x1E    |      |      | compensation                                   |   |
| OFFSET_TC_Y | 0x1F    |      |      | 0 -> no compensation                           |   |
|             |         |      |      | 1 -> 6.25 μV/C                                 |   |
|             |         |      |      |                                                |   |
|             |         |      |      | 63 -> 400 μV/C                                 |   |
|             |         |      | 6    | Temperature polarity control                   | 0 |
|             |         |      |      | 0 -> positive compensation                     |   |
|             |         |      |      | 1 -> negative compensation                     |   |
|             |         |      | 7    | Reserved                                       | 0 |

Table 28: Register for Temperature Coefficient of Hall Element Offset Correction Settings

# 9.2.12 Sensor Status Register

The status register includes various flags which reflect the current state of the ASIC and they are either updated at power-up, or dynamically (i.e. "on-the-fly"). Note that the comparator associated flags are valid only if the respective channel is enabled through the corresponding PWR\_CTRL register (see 9.2.3).

| Register ID | Address | Bits | Meaning                                                                                                              | Flag update                            |
|-------------|---------|------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| STATUS      | 0x3F    | 0    | EEPROM checksum error                                                                                                | Power-up                               |
|             |         | 1    | EEPROM key invalid                                                                                                   | Power-up                               |
|             |         | 2    | Comparator status channel Z                                                                                          | Dynamic                                |
|             |         | 3    | Comparator status channel X                                                                                          | Dynamic                                |
|             |         | 4    | Comparator status channel Y                                                                                          | Dynamic                                |
|             |         | 5    | Device busy When this bit is high, no EEPROM access should be performed, and no update of G_CTRL should be requested | Power-up and G_CTRL<br>register update |
|             |         | 7:6  | Not used                                                                                                             | -                                      |

Table 29: ASIC Status Register

PHONE +41 43 205 26 37 SENIS AG

FAX +41 43 205 26 38 Neuhofstrasse 5a

E-MAIL info@senis.ch 6340 Baar, Switzerland

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 21/24



## 10. EEPROM MEMORY MAP

The ASIC is designed the way that gain independent settings are located in the EEPROM from address 0x100 to 0x10E (Table 31) and those that have to be adapted according to the chosen gain (Table 32). Since the data stored in the EEPROM reflect the respective settings in the registers (just named differently e.g. EREG\_0 instead of REG\_0), thus the details about their meaning is detailed in chapter 9.2. Note that for the settings in Table 32 only the 2 bit gain values stored in registers G\_CTRL\_X, G\_CTRL\_Y and G\_CTRL\_Z, are always used to read the calibration data from the EEPROM (see Table 21). The gain selection in the EEPROM EGain\_sel (address 0x10E) is shown in Table 30.

| E_Gain_sel (address 0x10E) |   |          |          |          |          |          |          |
|----------------------------|---|----------|----------|----------|----------|----------|----------|
| 7                          | 6 | 5        | 4        | 3        | 2        | 1        | 0        |
| -                          | - | Y Gain S | election | Z Gain S | election | X Gain S | election |

Table 30: Bits for Gain Selection in the EEPROM.

| ID            | Address     |
|---------------|-------------|
| EREG_0        | 0x100       |
| EREG_1        | 0x101       |
| EREG_2        | 0x102       |
| EREG_3        | 0x103       |
| EREG_4        | 0x104       |
| EREG_5        | 0x105       |
| EREG_6        | 0x106       |
| EREG_7        | 0x107       |
| EPWM_CTRL     | 0x108       |
| EChannel_Ctrl | 0x109       |
| OSC trim      | 0x10A       |
| ETHRES_Z      | 0x10B       |
| ETHRES_X      | 0x10C       |
| ETHRES_Y      | 0x10D       |
| EGain_sel     | 0x10E       |
| -             | 0x10F-0x13F |

Table 31: EEPROM Memory for Common Parameters

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 22/24

PHONE +41 43 205 26 37 FAX +41 43 205 26 38 E-MAIL info@senis.ch





| Gain 0 data set | Address |
|-----------------|---------|
| EDAC_Z_G0       | 0x140   |
| EDAC_X_G0       | 0x141   |
| EDAC_Y_G0       | 0x142   |
| ESENS_Z_G0      | 0x143   |
| ESENS_X_G0      | 0x144   |
| ESENS_Y_G0      | 0x145   |
| ESENS_TC_Z_G0   | 0x146   |
| ESENS_TC_X_G0   | 0x147   |
| ESENS_TC_Y_G0   | 0x148   |
| EOFFSET_Z_G0    | 0x149   |
| EOFFSET_X_G0    | 0x14A   |
| EOFFSET_Y_G0    | 0x14B   |
| EOFFSET_TC_Z_G0 | 0x14C   |
| EOFFSET_TC_X_G0 | 0x14D   |
| EOFFSET_TC_Y_G0 | 0x14E   |
| -               | 0x14F   |

| Gain 1 data set | Address |
|-----------------|---------|
| EDAC_Z_G1       | 0x150   |
| EDAC_X_G1       | 0x151   |
| EDAC_Y_G1       | 0x152   |
| ESENS_Z_G1      | 0x153   |
| ESENS_X_G1      | 0x154   |
| ESENS_Y_G1      | 0x155   |
| ESENS_TC_Z_G1   | 0x156   |
| ESENS_TC_X_G1   | 0x157   |
| ESENS_TC_Y_G1   | 0x158   |
| EOFFSET_Z_G1    | 0x159   |
| EOFFSET_X_G1    | 0x15A   |
| EOFFSET_Y_G1    | 0x15B   |
| EOFFSET_TC_Z_G1 | 0x15C   |
| EOFFSET_TC_X_G1 | 0x15D   |
| EOFFSET_TC_Y_G1 | 0x15E   |
| -               | 0x15F   |

| Gain 2 data set | Address |
|-----------------|---------|
| EDAC_Z_G2       | 0x160   |
| EDAC_X_G2       | 0x161   |
| EDAC_Y_G2       | 0x162   |
| ESENS_Z_G2      | 0x163   |
| ESENS_X_G2      | 0x164   |
| ESENS_Y_G2      | 0x165   |
| ESENS_TC_Z_G2   | 0x166   |
| ESENS_TC_X_G2   | 0x167   |
| ESENS_TC_Y_G2   | 0x168   |
| EOFFSET_Z_G2    | 0x169   |
| EOFFSET_X_G2    | 0x16A   |
| EOFFSET_Y_G2    | 0x16B   |
| EOFFSET_TC_Z_G2 | 0x16C   |
| EOFFSET_TC_X_G2 | 0x16D   |
| EOFFSET_TC_Y_G2 | 0x16E   |
| -               | 0x16F   |

| Gain 3 data set | Address |
|-----------------|---------|
| EDAC_Z_G3       | 0x170   |
| EDAC_X_G3       | 0x171   |
| EDAC_Y_G3       | 0x172   |
| ESENS_Z_G3      | 0x173   |
| ESENS_X_G3      | 0x174   |
| ESENS_Y_G3      | 0x175   |
| ESENS_TC_Z_G3   | 0x176   |
| ESENS_TC_X_G3   | 0x177   |
| ESENS_TC_Y_G3   | 0x178   |
| EOFFSET_Z_G3    | 0x179   |
| EOFFSET_X_G3    | 0x17A   |
| EOFFSET_Y_G3    | 0x17B   |
| EOFFSET_TC_Z_G3 | 0x17C   |
| EOFFSET_TC_X_G3 | 0x17D   |
| EOFFSET_TC_Y_G3 | 0x17E   |
| -               | 0x17F   |

Table 32: EEPROM Memory for Gain Dependent Settings

Ref.No.: SENM3Dx v2.0

Rev.1.1 Page 23/24 FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch 6340 Baar, Switzerland



Table 33 shows the memory content after the gain dependent settings until the last address where the checksum is expected. To activate the EEPROM data, so that all settings contained in it are loaded to the respective registers at power-up, address 0x1FE must contain the key data 0xA5 (165) and address 0x1FF must contain the valid checksum.

A valid checksum means, that the two's complement sum of all data bytes stored in the entire EEPROM (including the checksum) equals 0. The following algorithm details the checksum calculation:

- 1: tmp value = (sum of data from address 0x100 to 0x1FE) modulo 256
- 2: checksum = 256 tmp value

| -        | 0x180-<br>0x1FD |
|----------|-----------------|
| KEY      | 0x1FE           |
| CHECKSUM | 0x1FF           |

Table 33: Memory Map with Checksum and Key

Ref.No.: SENM3Dx v2.0

**Rev.1.1** Page 24/24

PHONE FAX E-MAIL

+41 43 205 26 37 +41 43 205 26 38 info@senis.ch

